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Motivation

Figure 1: Conceptual model At continental ri�s, extension is accommodated by faulting and
magmatic intrusion (diking). During ri� evolution, erosion and sedimentation continually alter
the landscape, influencing the stress state of the lithosphere, the life-span of normal faults, and
regions where magmatic injection may or may not be favorable.

• Magmatic accommodation of extension is o�en simulated in geodynamic models by
imposing a divergence term in the continuity equation in a column of model elements. The
ratio of the imposed divergence to total extension is the magmatic fraction of spreading, M .

• To date, most models impose a uniform M value through the domain and evaluate tectonic
responses to di�erent M values. Imposed uniform M values do not permit magmatic
responses to changing lithosphere stresses, topography, and fault evolution.

• We present a computationally-inexpensive di�use yielding formulation for M that responds
to changing stresses, while still allowing for controlled variations in magmatic overpressure
and supply.

Linking ri�- and ridge- shaping processes (diking, faulting, erosion, and sedimentation) across timescales from hours to millions of years
continues to present a challenge for long-term tectonics models. Here, we present a method for simulating magmatic injection in a ri� or
ridge environment that a�empts to capture the dynamics of injection response to fault growth, topographic evolution, and evolving
lithospheric stresses.

Numerical methods

Tectonic Model

Figure 2: Model domain, boundary, rheology, and initial conditions

The numerical code SiStER [Olive et al., 2016] solves for the
conservation of mass (1), momentum (2), and energy(3) using
a finite-di�erencing scheme on a fully staggered grid. In
equations 1–2, v indicates velocity, f

′
ij denotes deviatoric stress

(indices i and j indicate the vertical or horizontal direction
respectively; repeated indices indicate summation), and T is
temperature. Density, heat capacity, and thermal conductivity
are d , cp, and k, respectively. The right-hand side of equation
1 accounts for regions where dike injection occurs, where M
is the fraction of magmatically accommodated extension, U1/2
is half the extension rate, and dx is the dike injection width.
In equation 3, DT

Dt is the material time-derivative of T . We
implement a visco-elastic-plastic rheology, assuming that the
lithosphere behaves as a Maxwell solid; history terms for stored
elastic stresses are added to the right side of Equation 2.
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Magmatic Accommodation of Extension

Figure 3: Tensile diking condition schematic

A region of diking and magmatically-accommodated extension is
simulated using a modified approach from Buck et al., [2005] and
Behn and Ito [2008]. In this formulation, regions where magmatic
injection accommodates extension behave as zones of di�use
yielding in the lithosphere. The yielding zone and amount of
injected material responds to changes in stress conditions (e.g.,
interactions with nearby faults and topographically-driven stress
perturbations).

Boundary and initial conditions
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ΔfM
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At each timestep, we assess the net combination of
deviatoric stress, pressure, and magmatic pressure
in the diking region. If the net stress condition
on a diking node is tensile, a volume of material
is injected into the region via Equation 1 that
corresponds to the tensile stress deficit.

ΔfM
xx = f

′
xx − P + PM − T (4)

M =
ΔfM

xxΔx
2KΔtU1/2

(5)

In Equations 4–5, ΔfM
xx is the tensile stress deficit

in the diking nodes, determined as the sum of
the deviatoric stress f

′
xx , pressure P , magmatic

fluid pressure PM , and a minimum tensile fracking
strength T . M is the proportion of tectonic extension
accommodated by magmatism, Δx is grid spacing, K
is the magmatic elastic modulus, Δt is the tectonic
time step.

Figure 4: Example stress contributions to tensile diking
determination (1 myr)

Magmatic Elasticity: A Proxy for Injection Frequency

The magmatic elastic modulus, K exerts an important control on M and overall model behavior. Lower K
values result in a greater amount of injected material for a given tensile stress excess (see Eq. 5). K is serving a
proxy for injection frequency between tectonic solves.

Figure 5: Comparative schematic for intrusion frequency with
di�erent K values

Suppose that in cases A and B, the tensile stress
excessΔfM

xx is equivalent. Over one tectonic time step,
more material is injected in case A than in case B, as
indicated by the dike density, such that

ΔfM
xxA = ΔfM

xxB
KA < KB
MA > MB

The diking formulation presented here produces normal faults in a simple 3-layer extensional model. The
fault-bounded blocks behave similar to the scaling relationship presented in Behn and Ito [2008],

Vx = 2U (M − 0.5). (6)

The mismatch between experimental results and the
scaling relationship (Eq. 6) may be a result of M
variations in space and time, or the presence of two,
simultaneously active faults.

Figure 6: Simple three-layer tectonic model with an injection
zone (orange/red) and two normal faults.

Figure 7: Comparison of numerical results with varying K
values against Behn and Ito’s [2008] scaling relationship.

Preliminary Applications in a Coupled Ri� Model

Connecting topography, tectonics, and magmatic timescales
Preliminary results demonstrate complex interaction between surface processes, fault-generated topography,
and dike injection during ri� evolution. As ri� flank topography grows, stress changes focus magmatic input
to shallower depths.

Figure 8: Model structure a�er 2.5 Myr of extension

Figure 9: Temporal evolution of model surface and cumulative injection are shown with time.
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