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◄  Figure 1. Schematic diagram 
of a rift system with thinned crust 
(and mantle) and a sediment-
filled basin flanked by a border 
fault. A dike and sill complex is 
sourced from a deeper magma 
chamber. Volcanoes and rift 
topography load the plate. CO2 is 
degassed via volcanic conduits 
and percolation through faults.

• Rift topography, volcanoes, and underlying crustal magma chambers cause 
fundamental changes to the density structure, load the plates, and change 
the state-of-stress within the crust and mantle lithosphere 

• Objective: to quantify the interactions between surface and subsurface 
loading on crustal state-of-stress in a rift setting 

• Key question: How do surface (e.g., volcanoes, rift flanks) and subsurface 
intrusions (sills, dikes, magma chambers) combine with in-plane stresses in 
magmatic rift zones?

(Figures adapted from Oliva et al., 2019; Weinstein et al., 2017)

◄  Figure 4. 2D analytical model of E-W cross-
sections across the rift. 
• Topographic load + regional extension 
• Preferred region for melt storage beneath the 

rift valley (red in B and C) that is enhanced 
compared to other parts of the Natron rift 
sector. Location matches hypothesized sills 
and tomography (D).  

• Lines: direction of most compressive principal 
stress, proxy for likely direction of intrusion 
propagation 

• (D) Corresponding shear wave (Vs) 
tomography transect: Low-Vs zones at about 
20 km depth are interpreted as magma 
chambers (Roecker et al, 2017).
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▶  Figure 2. Map. 
• REGION: North Tanzania 

Divergence, southernmost sector of 
Eastern branch, East African Rift 

• CRAFTI local array, 2013-2014 (blue 
circles) 

• OL: Oldoinyo Lengai 
• 2007-2008 seismomagmatic 

sequence (dike, earthquakes, OL 
eruption; dike labeled in green) 

▶  Figure 3. Local stress rotation. 
• Summed moment tensors: local 

earthquakes 2013-2014 (blue); 
teleseisms 1964-2007 (black) (Craig 
et al., 2011) 

• Green arrows: GPS velocity vectors 
for a Nubia-fixed model (King et al., 
2019) 

• ~60º local stress rotation in middle 
solid blue box 

• Model domain for 2D: Cross-section 
along black dashed line 

• Model domain for 3D: Blue dotted 
box, higher res inner box 

• Receiver functions (Plasman et al., 
2017) and joint seismic-gravity 
tomography (Roecker et al., 2017) 
constrain Moho/crustal thicknesses.

▶  Figure 5. 2D static models, E-W 
transects.  
• Using PyLith (Aagard et al., 2013) 
• Topography (SRTM90) and estimated 

basin depths from refraction and wide-
angle reflection data (Birt et al., 1997) 

• Stresses = deviations in gravitational stress 
with respect to a reference model 
(uniform-thickness three-layer model with 
no magmatic systems) 

• Numerical models of separate stress 
contributions of each rift component 
colored by displacement magnitude 
(proxy for stress and strain) 

• Separate effects of d) surface topography, 
e) an intruded sill (density contrast), f ) an 
inflating magma chamber (density 
contrast and outward pressure), g) the 
Moho topography of the thinned crust, h) 
combined effects of d-g, and i) combined 
effects of all plus a displacement 
boundary condition (regional extension)

◄  Figure 6. 1D profiles from 2D static models.  
• Vertical and horizontal stresses along the 1D 

depth profile (deviation from a reference 
model)  

• Within 100 m of the profile (x=2750 m) 
• Ref: reference, Topo: topography (Fig. 5d), Sill 

(Fig. 5e), MC: magma chamber (Fig. 5f ), Moho: 
thinned crust (Fig. 5g), All (Fig. 5h).  

• Topography has the largest effect close to the 
surface; the magma chamber inflation has a 
large effect nearby but becomes negligible 
farther away 

• Horizontal stresses are an order of magnitude 
smaller than vertical stresses.

◄  Figure 7. Map view of 
principal stresses.  
• a) Topography only, b) all 

components together, c) 
topography + extension, and 
d) all components + extension 

• Topography with subsurface 
effects produces a NNW-SSE 
sigma3 ~ T-axis from stress 
inversion of local and 
teleseismic earthquakes 

• Modulation of the extension 
imposed on the models could 
produce stress orientations 
similar to those observed from 
focal mechanisms 

• Extension rotates preferred 
intrusion orientation (sigma1-
sigma2 plane) to near-vertical 
in Southern Gelai

▼   Figure 8. Schematic diagram of early-stage rifting.  
• In addition to topographic loading, the subsurface density gradients from a thinned 

crust and the crustal magmatic complex also alter the stress field at depth 
• GPS: constrain surface motions; Seismicity: stress (strain) field at depth 
• Surface topography and extension influences the shallow stress field the most (~upper 

crust), but at depth (~lower crust), subsurface density contrasts play a larger role.
• Local stress field due to rift 

magmatic system (surface 
and subsurface) determine 
orientation and evolution 
of transfer fault systems 

• Large subsurface stresses 
may be overlooked when 
only considering surface-
motion constraints but are 
key to a holistic three-
dimensional understanding 
of rift tectonics
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