1. Introduction
Besides the overall wedge taper itself, the most prominent feature
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7. Width decreases with increasing basal 7
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6. Block width increases with sediment friction
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of accretionary wedges and fold-and-thrust belts is the series of
imbricate thrust faults. The widths of the blocks of material
between the thrusts reflects upon mechanical properties of the
accreting sediment. We use numerical models and analytical
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stress solutions to illuminate the basic mechanics controlling
thrust block width, and to define relationships to the thickness H
of the sediments entering the wedge, brittle frictional strength of
the sediment (¢,u) and along the decollement (¢,,1,), pore-fluid
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pressure ratio, A, and dip 3 of the basal decollement.
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Stress (c,) from numerical model builds
in the sediment forward of the wedge
until a new frontal thrust forms.

Increasing ¢

0 100

(9) (& basal frictions
to preserve taper),
show w, increasing

200 300
Total shear stress, 6, (MPa)

;’:}:;I:q

0
1

m

®
X
Z
u
2 0
A .
»

z=H/2 . .
06 w/ increasing ¢.
1
AT T Below: Greater ¢ Distance (km)
- L increases strength Above: Models w/ different basal frictions (¢,) show w, decreasing modestly
Analytical solutions show elastic stress (c,) & force of thrust, with increasing ¢, (compare double arrows marking w, for different models).

building with time as in numerical model.
R = ratio of stress to brittle strength.
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2. Numerical model
The numerical code is SiStER uses finite-differences & the mark-
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3. Forming the wedge and evolution of thrust block width

Sandbox experiment by Saha et al. [2014]

starting  16.6 km
width w,
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Width w decreases in proportion to the mean
horizontal strain Ag experienced by a wedge
with a critcal Coulomb taper a \

“Force balance distance” Lincreases with with fault topography (AH). L is the
distance forward of the wedge over which the net leftward force due to basal shear
balances the net rightward force from the active frontal thrust. L is also the distance
where stress is substantially perturbed and thus within which the new thrust forms.
Initial block width, w, (& w/H) increases with L.

5. Block width is proportional to thickness H
of incoming sediment
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8. Scaling law for normalized thrust block width
w/H, is based on analytical solution for normal-

12. Scaling combined with critical
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Effective basal friction, (1-A)p, (1), + P,tan(p)
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used with our scaling laws,
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with critical Coulomb wedge
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11. Conclusions
The width of imbricate thrust blocks increase with sediment thickness H, friction p & cohesion
C, and pore-fluid pressure ratio 2, and decrease with basal friction 1, and dip {3, due to their
influence on the distance forward of the wedge where stress is substantially perturbed by
subduction. This distance L is that needed for the net force due to basal shear to balance the
opposing force of the active frontal thrust. Our scaling law can be combined with critical
Coulomb wedge theory to estimate the strength parameters (u, p, and 1) of sediments at the
front of accretionary wedges.

% Distance (km)

Basal dip 3 adds leftward force & thus reduces amount of basal
shear needed to balance the rightward force of the active thrust. L
and w/H increases according. P essentially confines the distance
of excess stress & hence the new thrust closer to the wedge.

Distance (km)
Pore pressure weakens the sediment and its base, but the effect on the base
is more important. A weaker basal shear stress, requires a greater distance
L needed to balance force of active thrust. w/H increases accordingly.




