

Widths of Imbricate Thrust Blocks and the Strength of the Front of Accretionary Wedges and Fold-and-Thrust Belts

Garrett Ito (gito@hawaii.edu), and Gregory Moore Dept. of Earth Sciences, SOEST, Univ. of Hawaii Univ.

s more important. A weaker basal shear stress, requires a greater distance

needed to balance force of active thrust. w_{a}/H increases accordingly.

Thrust blocks form sequentially at the toe of the wedge. Width is greatest initially (w_n) and then decreases with time.

shear needed to balance the rightward force of the active thrust. I and w_{α}/H increases according. β essentially confines the distance of excess stress & hence the new thrust closer to the wedge

Coulomb wedge theory to estimate the strength parameters (μ , $\mu_{\rm b}$ and λ) of sediments at the front of accretionary wedges.