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Abstract

Percolation theory has been used to describe the behavior of a large number of disordered systems including Pa me I d. B urn I ey@ un |V.€d u
the passage of fluid through porous materials, the spread of forest fires, and the mechanical behavior of granular
materials. By virtue of both variations in elastic and plastic properties between different rock forming minerals as

well as the plastic and elastic anisotropy of individual mineral grains, polycrystalline aggregates of minerals are (more details can be found in Burnl ey (2013)

elastically and plastically disordered systems. Using 2D finite element models | have shown that stress transmis-

sion in rocks can also be described as a percolation problem and that the modulation of stress states within a rock DOI: 10.1038/ncomms3117 ) CO nn ect | ons

can in some cases, reach levels comparable to the differential load on the rock. The presence of such modulations

in the stress state of a rock has many implications for understanding the rock’s physical and chemical responses to Stress percolation causes shear localization in granu lar materials
stress. Stress percolation has been shown to occur in granular materials (the phenomena is sometimes described L geosivion ——

as “force chains”) and plays in important role in the development of shear localization in these materials. Al- | 8 SN TERed e

though it is well known that mechanical heterogeneities can cause shear localization in viscous materials, the Reuss state Force chains 21

popular assumption of a Reuss stress state in polycrystalline rocks has made it difficult to explain the development

of ductile shear localization in rocks that do not contain pre-existing weak features. The modulations in stress l l l l l

states created by stress percolation create small regions (yield nuclei) distributed throughout the rock that yield o ..", K I ONRINVIRU TR O L ,

: o ST : : i N ( | | ) ! 2 i )L ) { ( } { / { PPDEM model of a specimen
well before the bulk of the rock has reached the yield criterion. Local yielding leads to percolation of yielded re ‘, ..,( ( } \ 4)} V(o) /{ ) ) QK | S consisting of 5,000 elliptical
gions and shear localization. Whether the shear localization remains cryptic or is observable by virtue of the devel- ",v,‘\“ W ‘ )\’f ' (i ( ; 5/ & / I I / )/ y / particles. A constant lateral
opment of large offsets, is a function of the density and distribution of yield nuclei. The spatial distribution of yield .i’:,’u}.,,;\ (,im 3‘}’ ";{’: 2,\: ( ,m z \ /33 Wl |0 (( , ; confining pressure was applied
nuclei is a function of the nature of the stress percolation pattern as well as the degree of variation in yield R I R R, MR Sltlrrae.cnt I\yv:\z Qgiﬁjétlﬂrecfugﬁ Ita:/I\/o
strength of the constituent minerals and their distribution throughout the rock. Taking stress percolation into ac- T T Cummulative internal shear strains in a 2D rigid walls at a constant verti-
count helps explain why shear localization occurs during ductile deformation and predicts which rock types are ) granular material (rods) cal displacement.

Visualized with digital image correlation

more or less prone to develop large-scale shear localization. N
(http://ppdem.net/Case3_Triaxial.html)

Com pOnent HeterOgenelty Shear localization is observed during ductile deformation

in fully dense polycrystalline materials

Perco | ation Stress percolation occurs

in granular materials

A familiar example: (http://www.phy.duke.edu/~bob) Equivalent strain
simulation of oil percolating in sand
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Shear localization pattern is controlled by position of softer grains but aIso the stress
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